نظرية فيثاغورس
لطالما أفرزت لنا الحضارات على جميع اختلافاتها الكثير من المعارف والعلوم، والتي لا زلنا نستخدمها إلى اليوم في جميع مناحي الحياة، ونستفيد منها في دراستنا وحياتنا اليومية، حتى أصبحت هذه المعلومات والنظريات مسلمات يعرفها الجميع كبارًا وصغارًا على حد سواء.
وللحضارة اليونانية دورها البارز على مستوى العالم في إثراء الفكر الإنساني بمختلف العلوم والمعارف الإنسانية، وفيها من الأسماء اللامعة الكثير، في الفلسفة، والرياضيات، والفلك وغيرها.
ويعد فيثاغورس واحدًا من أشهر العلماء على مستوى البشرية جمعاء، لما قدمه من أبحاث ونظريات علمية وفلسفية ورياضية، تخدم البشرية وتسهل حياتها، فلنتعرف معًا على هذا العالم الذي هو أشهر من نار على علم.
من هو فيثاغورس
فيثاغورس الساموسي، ولد عام خمسمئة وسبعون قبل الميلاد، في جزيرة ساموس على سواحل اليونان، درس على يد أفضل أساتذة اليونان في عصره، وعندما بلغ السادسة عشر من العمر تفوق على زملائه وحتى على أساتذته، وعجزوا عن الإجابة على تساؤلاته، فانتقل للدراسة على يد الأستاذ طاليس المالطي، المهتم بدراسات الرياضيات والأعداد.
وتنقل وزار الكثير من دول العالم، كبلاد ما بين النهرين (سورية والعراق)، وزار مصر وأقام فيها لفترة من الزمن، وتعلم خلال أسفاره الكثير من علوم الرياضيات والفلسفة والفلك التي كانت معروفة لدى مختلف الحضارات في ذلك الزمن.
وانتهى به المطاف ليقيم في كروتني جنوب إيطاليا، ليتعرف هناك على أحد أغنياء المنطقة والمدعو ميلان، والذي كان مولعًا بالعلوم والفلسفة والرياضيات، فخصص لفيثاغورس جزءًا من منزله، وأغدق عليه المال ليتابع دراساته وينشئ مدرسة فلسفية خاصة به هناك.
توفي في عام أربعمئة وخمسة وتسعون قبل الميلاد.
نظرية فيثاغورس في المثلثات
تقول النظرية بأنه: في المثلث قائم الزاوية، يكون مربع طول الوتر، مساويًا لمربعي طول كل من الضلعين الذين يحددان الزاوية القائمة.
وللتوضيح لنفرض أن لدينا المثلث ABC
هو الوترAB الضلع
فحسب نظرية فيثاغورث يكون AC² + BC² = AB²
وبالتالي يسهل علينا معرفة أطوال أضلاع المثلث بالكامل بمعرفة طولي ضلعين منه، وبالتالي يمكننا معرفة مساحته أيضا
فاذا كانAC=3 , BC=4فيكون وفق نظرية فيثاغورث
بالتالي
AB^2=3^2+4^2=3*3+4*4=9+16
=25
AB=√25=5
كذلك لهذه النظرية استخدام آخر وصيغة أخرى تقول:
في المثلث قائم الزاوية، مساحة المربع المنشأ على الوتر، تساوي مجموع مساحتي المربعين المنشأين على الضلعين المحددان للزاوية القائمة.
للتوضيح لنشاهد الشكل التالي
نظرية فيثاغورس في المثلثات بالصيغة الثانية
حسب نظرية فيثاغورث ولنأخذ أبعاد المثلث بحيث
a = 3
b = 4
فتكون
c² = a² + b²
c² = 3² + 4²
c² = (3×3) + (4×4)
c² = 9 + 16
c² = 25
c = √25 = 5
وكما نعلم مساحة المربع هي مربع طول الضلع أي طول الضلع x طول الضلع
بالتالي مساحة المربعات تكون
المربع a = 3 x3 = 9
المربع b = 4 x 4 = 16
المربع c يمكن حساب مساحته رياضيًا ليكون 5×5=25
أو عن طريق نظرية فيثاغورس ليكون
مساحة المربع c = مساحة المربع a + مساحة المربع b
مساحة المربع c = 9 + 16 = 25
كيف برهن فيثاغورس على صحة نظريته
تمكن فيثاغورث من البرهان على صحة نظريته عن طريق ملاحظته، ومعرفته بالمثلث الذهبي وأبعاده الصحيحة، ليبدأ ملاحظة أبعاد باقي المثلثات، ويكتشف أولا انهها جميعها من مضاعفات أبعاد المثلث الذهبي.
وبعدها بمتابعة التجريب، اكتشف موضوع تساوي مجموع مربعي طولي الضلعين المقابلين للوتر مع مربع طول الوتر، ويجربها كنظرية ويكتشف صحتها ويعممها على باقي المثلثات القائمة.
أصدقائي، إن البحث ومتابعة التجريب وملاحظة أصغر الأشياء، هي ما قادنا إلى الاكتشافات العظيمة التي تنعم بها البشرية، اليوم وهي ما سهل حياتنا وجعلها أفضل، ولكن من يقف وراء هذه الملاحظات والاكتشافات، هم عقول مبدعة أغنت الحضارة بفكرها وعلمها، لتترك لنا هذا الإرث العظيم، وتصنع لنفسها اسمًا يتناقله التاريخ على مدى العصور، ويبقى محفورًا في أذهان البشرية جمعاء